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1 Introduction

In the previous paper [FLSU], we determined the Galois groups associated with some poly-
nomials constructed through the use of circulant matrices. In the process of determining
the Galois groups, the irreducibility of the trinomial x2p + xp + mp was established, where p
represents an odd prime and m an integer ≥ 2. The approach there was based on a method
of Lebesgue [Le]. In this paper, we discuss two other approaches we discovered in our in-
vestigations, both relying on the nice work of Bilu, Hanrot, and Voutier [BHV] (with an
appendix by Mignotte) on Lucas and Lehmer numbers.

In the next section, we consider the more general polynomials tp(x) = x2p +bxp +c where
b and c are nonzero integers. There are four cases where reducibility is easily established:

(i) If b2 − 4c is a square, then x2 + bx + c factors so that tp(x) is the product of two
polynomials of degree p.

(ii) If p ≥ 5 and b = up for some integer u and c = b2, then tp(x) is divisible by x2 +ux+u2

(with roots ζ±1
3 u).

(iii) If p ≥ 3 and b = 2(p+1)/2up for some integer u and c = b2/2, then tp(x) is divisible by
one of x2 + 2ux + 2u2 (with roots

√
2ζ±3

8 u) or x2 − 2ux + 2u2 (with roots
√

2ζ±1
8 u)

depending on whether p ≡ ±1 (mod 8) or p ≡ ±3 (mod 8), respectively.
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(iv) If p ≥ 5 and b = 3(p+1)/2up for some integer u and c = b2/3, then tp(x) is divisible by
one of x2 + 3ux + 3u2 (with roots

√
3ζ±5

12 u) or x2 − 3ux + 3u2 (with roots
√

3ζ±1
12 u)

depending on whether p ≡ ±1 (mod 12) or p ≡ ±5 (mod 12), respectively.

The latter three cases can be shown, for example, by establishing that a root of the claimed
quadratic factor is a root of tp(x). For convenience in a moment, we note that the condition
p 6∈ {2, 3, 5, 7, 13} can be reworded as p does not divide (q − 1)(q + 1), when q is the prime
181. We establish the following.

Theorem 1. Let p be a prime and b and c be nonzero integers not satisfying the conditions
in (i), (ii), (iii), and (iv) above. Then the trinomial tp(x) = x2p + bxp + c is irreducible
provided

p -
∏

q prime
q|(181·b)

(
(q − 1)(q + 1)

)
.

The condition in Theorem 1 that p not divide the product appears too strong as typically
the trinomial x2p + bxp + c is irreducible even when p divides the product. In the case that
p ∈ {2, 3, 5, 7, 13}, a closer analysis based on the work in [BHV] is possible. Also, the
argument we will give implies x2p +bxp +c is irreducible whenever b2−4c is not a square and
c is not a pth power, so examples of reducible x2p +bxp +c should take this into consideration.
Among the more interesting examples of reducible x2p + bxp + c we found are

x10 + 2x5 + 35, x22 + 67x11 + 211, x22 + 394x11 + 311, and x34 + 101x17 + 217.

The factorization of trinomials has been considered in great detail by Schinzel [Sc2,
Sc3, Sc4]. In particular, Lemma 28 in [Sc2] gives a necessary and sufficient condition for the
reducibility over any field K with characteristic different from 2 of the more general trinomial
x2m + bxm + c, where m is a positive integer. This more general trinomial is reducible over
K if and only if b2 − 4c is a square in K or there is a prime p dividing m with x2p + bxp + c
reducible over K or 4 divides m and x8 + bx4 + c is reducible over K. The conditions (ii),
(iii) and (iv) for the reducibility of x2p + bxp + c above follow from taking v = 1, 1/2 and
1/3, respectively, in (30) of Lemma 28 in [Sc2].

Theorem 1 implies that if b2 − 4c is not a square and p is sufficiently large depending on
b, then tp(x) is irreducible. This follows also from Theorem 10 in [Sc2]. To see this, note
that a theorem of Capelli implies that if b2 − 4c is not a square and tp(x) is reducible, then
it has an irreducible quadratic factor. By taking d = 2 in Theorem 10 of [Sc2], one obtains
that there are effective constants c0 and c1 such that if b2 − 4c is not a square and tp(x)
is reducible, then p < max{c0, c1 log |b|}. This result is sometimes stronger and sometimes
weaker than the condition implied by Theorem 1, depending on the prime factorization of b.

In the third and final section of this paper, we return to the more specific trinomials
x2p +xp +mp and establish their irreducibility as a consequence of the following Diophantine
result.

Theorem 2. The equation
axn+2` − 1

axn − 1
= y2,
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holds for some positive integers a, x, n, and ` with x > 1 and some rational number y if and
only if

2|`, a =
3`−1 + 1

4
, x = 3, n = 1 and y = ±(3` + 2).

We end the last section by establishing the following related result which is a fairly direct
consequence of work of Bennett [Be].

Theorem 3. Let m ≥ 3, and consider the Diophantine equation

axr − 1

axn − 1
= ym. (1)

Suppose r and n are integers with r > n > 0. Then there are no solutions to (1) in integers
a, x, and y with a > 0 and x > 1 if also xr−n = zm for some integer z.

To clarify a connection with Theorem 2, observe that if x is an integer and m|(r − n),
then one has that xr−n = zm for some integer z. Note, however, that y is restricted to being
an integer in Theorem 3 and only restricted to being a rational number in Theorem 2.

2 The Irreducibility of More General Trinomials

In this section, we discuss the irreducibility of the trinomials ax2p + bxp + c ∈ Z[x], where
p is a prime and a, b, and c are integers with abc 6= 0. One can multiply the trinomial by
a2p−1, and replace x by x/a, obtaining a monic trinomial. So, we assume throughout that
a = 1. Our interest then is in the irreducibility of the trinomial tp(x) = x2p + bxp + c.

Our approaches in this paper take advantage of recent work of Bilu, Hanrot, and Voutier
[BHV]. A Lucas pair (α, β) is a pair of algebraic integers for which αβ and α+β are nonzero
coprime rational integers and α/β is not a root of unity. A Lehmer pair (α, β) is a pair
of algebraic integers for which αβ and (α + β)2 are nonzero coprime rational integers and
α/β is not a root of unity. The Lucas numbers un and Lehmer numbers ũn are defined for
nonnegative integers n by

un =
αn − βn

α− β

and

ũn =


αn − βn

α− β
if n ≡ 1 (mod 2)

αn − βn

α2 − β2
if n ≡ 0 (mod 2),

respectively. A prime p is called a primitive divisor of un provided that p divides un and
p does not divide (α − β)2u1u2 · · ·un−1. A prime p is called a primitive divisor of ũn if p
divides ũn and p does not divide (α2 − β2)2ũ1ũ2 · · · ũn−1. The work of Bilu, Hanrot, and
Voutier [BHV] settles a long-standing problem of classifying all cases of α, β, and n where a
primitive divisor of un or a primitive divisor of ũn does not exist. Two consequences of their
work that we will make use of here are as follows. In the next section, we will use
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Result 1. For odd n ≥ 5, a Lehmer number ũn defined from a Lehmer pair of the form

(α, β) = (
√

a +
√

a + 1,
√

a−
√

a + 1)

for some rational integer a has a primitive prime divisor.

In the current section, we will make use of

Result 2. If p 6∈ {2, 3, 5, 7, 13} and p is a prime, then each of u2p and ũp contains at least
one primitive prime divisor.

Both of these follow from Theorem C, Theorem 1.3, and Theorem 1.4 in [BHV]. Also, it
follows from (3), Proposition 2.1 (i) and Corollary 2.2 all from [BHV], that if p is an odd
prime, then every primitive prime divisor q of u2p or ũp satisfies p divides (q − 1)(q + 1).

We are ready to prove Theorem 1. We consider p not dividing the product appearing in
the theorem. In particular, p 6∈ {2, 3, 5, 7, 13}. Let γ = (−b +

√
N)/2, where N = b2 − 4c,

and let λ be a pth root of γ. Note that λ is a root of tp(x). Also, the conditions in Theorem 1
imply that N is not a square. By a theorem of Capelli (see [Sc1] or [Sc2] or, for an alternative
to Capelli’s theorem, see the proof of Lemma 8 in [FLSU]), it suffices to show that γ is not
a pth power in Q(

√
N). Assume otherwise. Then

αp =
−b +

√
N

2
and βp =

−b−
√

N

2

for some distinct α and β in Q(
√

N) with αβ and α + β in Z satisfying (αβ)p = c and α + β
divides b. In particular, c is a pth power. Our goal is to show that under the conditions of
the theorem, we obtain a contradiction.

We claim that α/β is not a root of unity. Assume otherwise. Since b2−4c is not a square,

(α/β)p =
−b +

√
N

−b−
√

N
=

b2 + N − 2b
√

N

b2 −N
=

b2 − 2c− b
√

b2 − 4c

2c

is a quadratic irrational that is a root of unity. It follows that the last expression above is one
of the six numbers ±i, (±1±

√
−3)/2. Hence, b2 − 2c ∈ {0,±c}, so that c ∈ {b2, b2/2, b2/3}.

One checks that c being a pth power now implies that one of the conditions in (ii), (iii), or
(iv) holds, contrary to our conditions on b and c. Thus, α/β is not a root of unity.

We consider two cases depending on whether the rational integers αβ and α + β are
relatively prime. First, suppose that they are. Consider the Lucas number

u2p =
α2p − β2p

α− β
=

αp − βp

α− β
· (αp + βp) =

αp − βp

α− β
· (−b).

As p 6∈ {2, 3, 5, 7, 13}, we deduce from Result 2 that u2p has a primitive prime divisor q
dividing b. As then p divides (q − 1)(q + 1) and q|b, we obtain a contradiction.

Now, suppose that s = αβ and r = α + β are not coprime. Note that α and β are roots
of x2 − rx + s. Let d = gcd(r2, s), and set

α′ =
α

d1/2
, and β′ = − β

d1/2
.
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Then

s′ = α′β′ = −s

d
and r′ = (α′ + β′)2 =

r2 − 4s

d

are rational coprime integers. Observe that αp − βp =
√

N is nonzero so that α − β 6= 0.
Hence, r2 − 2s = (α− β)2 6= 0. Therefore, r′ and s′ are also nonzero. As α′/β′ = −α/β, we
furthermore have that α′/β′ is not a root of unity. Thus, (α′, β′) is a Lehmer pair. Observe
that

d(p−1)/2(α + β)ũp = d(p−1)/2(α + β) · (α′)p − (β′)p

α′ − β′ = αp + βp = −b.

It follows that the Lehmer number ũp divides b. As before, we obtain a contradiction as ũp

must have a primitive prime divisor q dividing b for which p divides (q − 1)(q + 1).
The reduction going from Lucas numbers to Lehmer numbers at the end of the argu-

ment above is not new. The idea is used, for example, by Shorey and Tijdeman [ST, see
Lemma A.10].

3 A Ljunggren-Type Diophantine Equation

In the previous section, we established an irreducibility result for ax2p + bxp + c ∈ Z[x],
partially generalizing our earlier demonstration in [FLSU] of the irreducibility of the trinomial
pm(x) = x2p + xp + mp where m ≥ 2. Our consideration of the more general trinomial in
the last section required some restrictions on the primes leading to irreducibility. However,
it did present an alternative approach to dealing with the irreducibility of pm(x) as well as a
more general class of similar polynomials. In this section, we present yet another approach
which associates the irreducibility of pm(x) with a certain Diophantine equation. We will
make use of Result 1 of the previous section.

We consider p to be an odd prime and m ≥ 2 an integer. As in the beginning of
the proof of Theorem 1, if pm(x) is reducible, then there are α and β in Q(

√
N), where

N = 1− 4mp, that are roots of the quadratic x2 ± x + m. The discriminant of the quadratic
is D = 1 − 4m < 0 and, hence, not a square. We deduce that Q(

√
N) = Q(

√
D). This

equality can hold if and only if there is a rational number x ∈ Q such that

4mp − 1

4m− 1
= x2.

Thus, the irreducibility of pm(x) follows as a consequence of Theorem 2.
A solution to the equation

axn+2` − 1

axn − 1
= y2

implies that there exist positive integers u and v satisfying

axn − 1 = du2 and axn+2` − 1 = dv2,

where d is a positive squarefree integer dividing gcd(axn+2` − 1, axn − 1). We then have the
equation

axn(x`)2 − dv2 = 1.
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Therefore,
(du2 + 1)(x`)2 − dv2 = 1.

Let A = axn = du2 + 1 and B = d, and let (X1, Y1) be the minimal solution in positive
integers to the Pell equation

AX2 −BY 2 = 1. (2)

Define
α0 = X1

√
A + Y1

√
B and β0 = X1

√
A− Y1

√
B. (3)

It is well-known (see [Wal]), that if A 6= 1 and A and B are positive integers with at least
one of A and B not a square, then all the positive integer solutions of (2) are of the form

(X, Y ) = (Xt, Yt),

for some odd integer t ≥ 1, where

(Xt, Yt) =
(αt

0 + βt
0

α0 + β0

X1,
αt

0 − βt
0

α0 − β0

Y1

)
.

We now use this description of the solutions to (2). Observe first that A > 1. Also, d
is squarefree so that B = d is not a square unless d = 1. In that case, A = u2 + 1 cannot
be a square (as both A and A − 1 would be consecutive positive integral squares, which is
impossible). Hence, at least one of A and B is not a square. It is not difficult to see that
(1, u) is the minimal solution to (2) with A and B as above (both X and Y are larger for
any other solution in positive integers to (2)); thus, X1 = 1, and Y1 = u. We deduce that
there is an odd positive integer t for which

x` = Xt =
(
√

du2 + 1 + u
√

d)t + (
√

du2 + 1− u
√

d)t

2
√

du2 + 1

=
(
√

axn +
√

axn − 1)t + (
√

axn −
√

axn − 1)t

2
√

axn
. (4)

As x > 1 and ` > 0, we must have t > 1.
Fix α = α0 and β = −β0. Observe that αβ = −1 and (α+β)2 = 4(axn−1) are relatively

prime nonzero rational integers. One checks that α/β is a real number less than −1, so
clearly α/β is not a root of unity. Thus, (α, β) is a Lehmer pair. As t is odd, (4) implies
x` = ũt, a Lehmer number as defined in the previous section. We show that t = 3. Assume
t ≥ 5. By Result 1, ũt must have a primitive prime divisor. On the other hand, x|(α2−β2)2.
By the definition of being a primitive prime divisor of a Lehmer number, ũt in fact has no
primitive prime divisor. We obtain a contradiction; hence, t = 3.

Using the binomial theorem in (4) and reducing modulo x we get

0 ≡ t · (axn − 1)(t−1)/2 (mod x).

Hence, x|t. As x > 1 and t = 3, we deduce x = 3. Substituting t = 3 into (4), we obtain

x` = axn + 3(axn − 1) = 4axn − 3.
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Therefore, 3` = 4a3n − 3. Working modulo 4, we see that ` 6= 1. It follows that ` > 1 and,
hence, n = 1. We obtain 3`−1 = 4a−1 from which we deduce a = (3`−1 +1)/4. As 3`−1 +1 is
divisible by 4, we get 2|`. Rewriting the equation in the statement of the theorem, we have

y2 =
33` + 32`+1 − 4

3` − 1
= (3` + 2)2.

The theorem follows.

We note that Ljunggren [Lj] previously solved the case of a = 1 and n = 1 of Proposition
2. A related result with y integral can also be obtained from the following nice theorem of
Bennett [Be].

If a, b and m are integers with ab 6= 0 and m ≥ 3, then the equation
|axm−bym| = 1 has at most one solution in positive integers (x, y).

We now prove Theorem 3.
Assume (1) holds with the variables satisfying the conditions in Theorem 3. In particular,

the numerator and denominator on the left side of (1) are positive. Thus, if m is odd, then
y > 0; furthermore, in the case that m is even, we may suppose y > 0 (by replacing y with
−y if necessary). Also, as x > 0, we may take z > 0. Rewriting (1), we have

axnzm − (axn − 1)ym = 1. (5)

Therefore, (z, y) is a solution of the Diophantine equation

AXm −BY m = 1, (6)

where A = axn and B = axn−1. But (1, 1) is also a solution of the above equation. Observe
that the conditions x > 1 and xr−n = zm imply z 6= 1. In particular, (z, y) 6= (1, 1). By
Bennett’s theorem, we obtain a contradiction.
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